
���������	�
���	������������������	�	��������������������

– 1 –

��������� �	�	 ��
���	���� ���	����� ��� �	���� ����	�� �������

Samuel C. Chamberlain, Ph.D.
U.S. Army Research Laboratory

Aberdeen Proving Ground, Maryland, 21005–5067

ABSTRACT

As the move to automate the information
distribution process progresses, commer-
cial distributed database practices have
become the focus of many system designs.
However, at the lower echelons, where
wireless communications are the rule,
this has not been the case because (1) the
problem is still viewed as a sophisticated,
e–mail challenge to be solved using proce-
dural messages rather than databases
and (2) the rigidity of commercial prac-
tices does not support an environment
that is characterized by the unfortunate
combination of time–critical distribution
requirements and tenuous communica-
tions. This paper describes the concepts
and rationale behind resilient, as opposed
to robust, data replication and introduces
a ‘‘promiscuous’’ mechanism that ad-
dresses the requirement for highly selec-
tive information distribution when
bandwidth is tenuous. The final conclu-
sion is not surprising: ‘‘There is no free
lunch.’’

1 Background

Last year, a paper was presented at this symposium
that described a different perspective towards build-
ing battle command systems, a perspective that fo-
cuses on truly exploiting available computational
power through model-based, computationally in-
tensive paradigms of battle command rather than the
current communications–intensive, message–based
approach [Chamberlain, 1995]. Using this ap-
proach, a formal data model of the battlefield serves

as the hub of information flow. This is in contrast to
the traditional message–based approach where the
data model and its container, the database, are
viewed as only supporting entities. Under the mod-
el–based paradigm, each node maintains its own in-
dependent database, reflecting the battlefield situa-
tion to the best of its ability. From this vantage point,
the task of communications switches from exchang-
ing messages to updating each other’s databases.
Thus, the database provides the conduit, as well as
the hub, by which information is transferred be-
tween different units and, often, between the ap-
plications within the same unit (or system).

The preceding description is easily recognized
as that of a distributed database system that is typi-
cally implemented above a distributed computing
environment. One impetus for development of the
model–based approach is to make a true distributed
computing environment viable for the lowest eche-
lons (e.g., on platforms such a tanks, aircraft, or in-
dividual warriors) where communication links are
often tenuous at best. At these echelons, automating
battle command is further complicated by the real–
time nature of many of the tasks (e.g., situational
awareness, targeting, etc.). This paper describes the
concepts and rationale behind resilient, as opposed
to robust, data replications and ‘‘promiscuous’’
mechanisms are introduced to implement such a
scheme.

2 Associated Technologies and Issues

2.1 Active Databases and Triggers

To implement a model–based paradigm, active da-
tabase techniques may be used (see McCarthy and
Dayal [1989], Cohen [1989], Hansen and Widom
[1992], and Dayal et al. [1995]). In an active data-

���������	�
���	������������������	�	��������������������

– 2 –

Figure 1: Active Database Structure

�����������
�	�
	���

������������

�������

������ ������	�	

�	��	���� �
�	�
�	� ���� ���	��
������
��� �
���
�
���
������ �	 �

�������!

�"#$%&'�($)*'

�"#$%&'

�"#$%&'

�"#$%&'

�	�
�� ���� ���
��+�� ���
��� ���
��
����� ��� ��� 	��
������ ���� ��
����
�
���
� ��� ���!

�&%),&-$('

���������	

base incoming data are compared with a set of pre-
defined queries called ‘‘triggers.’’ When a trigger
fires, an associated action is executed. Typically, the
action is to notify an application program with an
alarm, see Figure 1. However, any action may be in-
voked by the trigger to include the replication of
data. Thus, active database triggers can be used to
control the flow of information, or in other words, to
control synchronization between replicated or dis-
tributed databases, see Figure 2.

2.2 Context–Sensitive Information Distribution

When one asks a military end user about system re-
quirements, the response is often: ‘‘Well, it depends
upon the situation.’’ A major advantage of active
databases is that any information that is maintained
in the database may be used in the trigger criteria.
Since each node may now maintain its own indepen-
dent model of the battlefield, this provides a gener-
al–purpose monitoring system for any application
or process. For example, if the current state of the

connected communications system is maintained in
the database, then that information can be used in
the trigger criteria. Average network delay is often
of keen interest to users. If it is maintained in the da-
tabase, then it may be referred to by the trigger crite-
ria to control whatever action is associated with the
trigger. Therefore, as delay varies, so can the in-
formation that is exchanged. Similarly, unit status
information may be used. The fact that a unit is ‘‘in
contact’’ may cause a different set of triggers to be
fired by an event than when the unit is in an Assem-
bly Area. Both of these examples represent just
another attribute in the database. No new software
needs to be created to handle these cases. This ap-
proach facilitates many new avenues for automation
because it easily allows the system to react ‘‘to the
tactical situation.” Therefore, information distribu-
tion may be context sensitive where the context is
the tactical situation that is represented in the data-
base.

2.3 Consistency versus Synchronization

A major issue of data replication is data consistency
(i.e., the property that the same fact in two different
databases contains the same value). Two good refer-
ences on this topic in the context of battle command
are Davis and Ginn [1995] and Kameny [1995].

 In commercial data replication mechanisms,
the concept of data integrity, enforced via the audit
trail, is paramount. Historically, in a distributed da-
tabase system, tight–consistency is employed. That
is, one is not allowed to execute an update until ev-
eryone (in the group) is ready to update his/her data-
base too. This is not unreasonable for most applica-
tions (e.g., we want a consistent view of our bank
statement or our airline seat assignment). Even in

Figure 2: Active Databases Can Be Used to Control Synchronization Thresholds Between Databases

������
���������

������
���������

	���	
��

��	����
	�

�	�
��

��	����
	�

�������� �����������
������ ������� ��
����� �!!"�������
�������#

�������� �����������
������ ������� ��
$!%��� 	�����
���&���#

�����������
�	�
	���

�����������
�	�
	���

������� ���� � � !��"#�� ����

���������	�
���	������������������	�	��������������������

– 3 –

newer ‘‘loose–replication’’ mechanisms, integrity
via the audit trail is still paramount. If connectivity
to another database is lost, the transaction is allowed
to occur locally while the remote transaction(s) are
cached (i.e., queued) for later distribution. When
the connection is resumed, a first–come, first–
served approach is used until all the transactions are
applied to the receiving databases. Thus, a common
audit trail (or history) is maintained at each node
with only the transaction times being different (i.e.,
the number and order of transactions is consistent).

Consider what this might mean to some battle
command applications. Suppose units are updating
their position locations once a minute and the com-
munications link is severed for ten minutes. Once
communications are restored, the ten-minute-old
updates are sent, followed by the nine-minute–old
updates, and so forth, until all the updates are
passed. In reality, all the commander may need is the
most recent location update.

In another example, ground commanders typi-
cally maintain information at a resolution two eche-
lons below theirs. This means that battalion com-
manders receive information about their
platoon–sized echelons. Imagine more than a dozen
of these databases frequently trying to update the
battalion commander’s database via an intermediate
node (their company commanders). This is simply
unrealistic given the communications performance
available at these echelons. For these reason, a new
style of replication mechanism is required.

In many military situations, timing is more im-
portant than audit trail. A small amount of current
data is usually more valuable than large amounts of

old, but consistent data. The meaning of ‘‘old, but
consistent’’ is that the data were correct at an earlier
time (e.g., my location at time T is XY) but is not the
most recent value (the correct but old data are re-
ferred to here as ‘‘stale’’ information). However,
some amount of staleness is OK, especially if the
approximate time lag is known. Because timing is
the driving factor, data synchronization may be a
better criterion than consistency because it implies a
predefined or known rate of interaction.

At the low echelons, real–time data may be fre-
quently entered into a local database from several
on–board systems (e.g., global positioning system
[GPS] receivers, inertial reference systems, speed
sensors, logistics information, etc.). Although the
latest data are maintained locally, this is an unrealis-
tic expectation for remote databases (sites) due to
severe communication constraints. Instead, some
level of data synchronization will be required.
Often, this is defined isochronally (e.g., updates ev-
ery 30 seconds or every 100 meters), but in reality, it
depends on the situation.

Fortunately, this is exactly the type of task for
which active databases are designed. By linking the
data replication mechanism to the triggers, any in-
formation that resides in the database can be used to
define situation–dependent interdatabase synchro-
nization criteria. In other words, triggers can be
used to describe how far out of synchronization the
databases (located at the different nodes) can be-
come without significantly affecting current mili-
tary operations. In Figure 3, even though the local
database may be receiving updates every two se-
conds from the on–board GPS, position updates to
other sites are based upon a realistic, desired rate or

��'()*+,)����)')���-).

Figure 3: Location Synchronization Varies With Conditions (Vehicle Speed & Network Delay)

��������

*+)�

����)')���-
/)0++)����	�
/)0+)�1�)')0+)���

0++)�

��������)$����)/

A Ground Speed Of 10 m/s (22.5 mph) With An Average Network Delay Of 10 seconds Means
An Update Every 100 meters At Best; Otherwise, One Will Just Saturate The Output Queue.

���������	�
���	������������������	�	��������������������

– 4 –

the best possible rate given the current network
conditions (e.g., every 50 meters or the average ve-
hicle speed times the average network delay). In the
example given, network performance is the control-
ling parameter. Position updates arriving more
often than every 100 meters will simply sit in the
queue because they are arriving at a rate faster than
the network can handle.

2.4 Robustness versus Resilience

One often hears the term ‘‘robust’’ used when de-
scribing communication or data replication sys-
tems. However, robust is defined as ‘‘exhibiting
strength,’’ which implies a system that has signifi-
cant force and power to fend off and repel attacks.
The word ‘‘resilient,” on the other hand, refers to
something that is ‘‘stressed or deformed without
permanently harming it.” At the lower echelons,
this is often the best we can do; that is, to ‘‘take a few
punches’’ and rebound after the attack. This is espe-
cially true if the ‘‘punches’’ are not really hurting us.
In battle command terms, this would mean not sig-
nificantly disrupting our synchronization. Thus, we
talk of promiscuous data replication mechanisms
that, when the situation warrants, willfully allow the
databases to drift out of synchronization, but within
known limits.1

3 Promiscuous Data Replication

At the lower military echelons, communications are
often tenuous at best. Average data rates can be rela-
tively very low (hundreds of bits per second) with
delays of tens of seconds and connectively can be
notoriously intermittent. Even loose–replication
mechanisms can become ‘‘bogged down’’ in this
environment where update failures can exceed
50%. However, it is surmised that this situation can
be handled effectively if we consider tactically sig-
nificant consistency as our goal. In other words, the
question should be asked: Just how consistent do we
really need to be to still accomplish our task? The
approach to achieve tactically significant consisten-
cy is to, one, be selective in what is sent, two, be effi-
cient in sending information with special care not to
waste bandwidth (i.e., saturate queues) with out-
dated information, and three, replace missing in-

1 From Webster 7th Collegiate Dictionary:
Robust – Exhibiting strength.
Resilient – Capable of withstanding shock without

permanent deformation or rupture.
Promiscuous – Casual, irregular.

formation with predictions based upon a priori in-
formation stored in the local database.

3.1 Distribution Rule

As previously stated, an active database trigger can
have any action associated with it. The most com-
mon action is to notify an application program with
an alarm. Similarly, a replication command can be
invoked by the trigger. For this paper, a trigger with
a replication command is called a distribution rule,
or just rule.

In one prototype implementation (by the U.S.
Army Research Laboratory, ARL), distribution
rules have the general form

IF criteria THEN action1 ELSE action2,
where the IF portion is the trigger mechanism, the
THEN portion invokes the replication mechanism,
and the ELSE portion invokes the failure resolution
action. The trigger criteria are tested each time new
information is received by the database (a typical
example is position location data that may arrive ev-
ery two seconds from an on–board GPS). The trig-
ger criteria can include any mixture of current data-
base information, the newly arrived information
(that caused the trigger to fire), mathematical ex-
pressions and constants, and meta–information
such as the source or destination of the information,
on what network it arrived, or whether it is new or
updated information. Note that at the low echelons,
broadcast radio networks are the norm; therefore,
overhearing of information exchanged between
other sites is also passed on to the active database.

 The replication mechanism contains informa-
tion about the what, where, and how information
should be sent to another database. These will be re-
ferred to as the ‘‘what–part,’’ ‘‘where–part,’’ and
‘‘how–part,’’ respectively. As with the trigger
mechanism, any information that is stored in the da-
tabase is accessible by the replication mechanism to
instantiate these parameters. Thus, dynamic data-
base values (i.e., variables) as well as constants can
be used in the rules. So the first objective (to be se-
lective in what is sent) is accomplished in two ways:
first, active database triggers identify the tactically
significant events that warrant the exchange of in-
formation, and second, the ‘‘what part’’ of the repli-
cation action determines what information is to be
exchanged as a result of an event.

���������	�
���	������������������	�	��������������������

– 5 –

3.2 Fact Exchanges

As with any distributed database system, the in-
formation exchanged between the databases is in the
form of individual database transactions (usually
updates). This is in contrast to a message–based ap-
proach where a predefined message that is com-
posed of a standard set of fields is exchanged; see
VMF [1996]. The advantage of the message–based
approach is terseness because fixed sets of fields are
predefined, thus eliminating most of the field identi-
fiers. However, the cost is inflexibility of content
and the added complexity required to build parsers
to map message fields into database fields. Adding
new fields to a message is a huge bureaucratic un-
dertaking. In the database approach, the content of a
data exchange (analogous to a ‘‘message’’) is deter-
mined by the rules and varies depending upon which
rule fires. The advantages of using direct database
updates are simplicity and flexibility, but at a cost of
having to include field identifiers. Fortunately, this
overhead can be significantly reduced by enumerat-
ing database schema entities and using surrogate
keys.

In the ARL prototype, a unit of exchange that in-
cludes one atomic event is called a Fact Exchange,
or FEX. From a networking perspective, a FEX
must be delivered reliably or it will be retrans-
mitted; any uncorrectable bit errors will require the
entire FEX to be resent.

A FEX is a variable entity that is determined in
the ‘‘what part’’ of the rule. The composition of a

FEX is determined dynamically and can depend
upon any value(s) stored in the database, to include
networking parameters such as average delay,
derived bit error rates, etc. For example, suppose
that a geographic area (such as a ‘‘No Fire Area’’) is
stored as a polygon object that is composed of point
objects. In other words, each point and the polygon
are a separate database entity, as is illustrated in Fig-
ure 4. If a new area is entered into a local database
(e.g., No Fire Area 42 as four database objects), a
trigger may fire, causing this information to be rep-
licated to other databases.

The actual exchange of information may be ar-
ranged in any number of ways as defined by the dis-
tribution rule. For example, all four database up-
dates may be sent in a single FEX, each may be sent
as its own FEX, or some combination in between
these extremes; see Figure 5. In either case, it makes
little difference to the database (although for sim-
plicity, one would like to include all related database
transaction in one FEX because it simplifies recov-
ery). However, to the network there may be a signif-
icant difference if the network is unreliable since the
number of bits retransmitted due to failures in-
creases with the size of the FEX. When the trans-
mission network is the bottleneck (as is the case be-
ing addressed here), one would want to dynamically
adjust packet parameters (such as size and retrans-
mission strategy) to optimize network performance.
Thus FEX size may be dictated by the lower layers
of the protocols (e.g., the datalink layer) rather than

Figure 4: A Geographic Area

�	��)23
��)��	�

���������)4� 5)0 ���������)4� 5)3+

���������)4� 5)6+

�����)�

�����)�

�

�

�

���������)4� 5)0+
�����)�

��" ���)23

���������)4� 5)0

���������)4� 5)3+

���������)4� 5)6+

�����)�

�����)�

���������)4� 5)0+
�����)�

��" ���)23

���������)4� 5)0

���������)4� 5)3+

���������)4� 5)6+

�����)�

�����)�

���������)4� 5)0+
�����)�

��" ���)23

Figure 5: Two Options for Atomic Events

��')036+

��')036*

��')0367

��')0368

��')0369

������)�:����
�����%���%)��!�����

�����%���%)���
������)�:���

���������	�
���	������������������	�	��������������������

– 6 –

the replication mechanism.2 This is a first example
of the kind of flexibility offered by applying casual,
or promiscuous, techniques to the data replication
task to accomplish the second objective (to be effi-
cient in sending information with special care not to
waste bandwidth).

3.3 End–to–End Reliability

Just as the ‘‘what part’’ of a rule identifies which in-
formation is to be exchanged within a FEX, the
‘‘where part’’ identifies the host destinations of a
FEX. The destinations may be identified directly in
the rule or indirectly via a database reference. This
latter capability allows one to use a single rule for
many general cases. For example, one may want to
return data to a host that is named in a database
transaction or to the host that generated the transac-
tion that caused the rule to fire. Both these cases
happen frequently in military operations.

Currently, both reliable and unreliable FEX
transfers are supported. Reliable transmissions may
be either unicast or multicast and are invoked when-
ever host addresses are named in the rule (either di-
rectly or indirectly). Because the communication
environment currently targeted is a single–hop,
broadcast network (e.g., either a combat net radio or
local area network [LAN]), multicast transmissions
simply require more bookkeeping at the Transport
Layer [IS 7498].3 Default transmission parameters
for the hosts may be obtained from either configura-
tion files or the database. Typical examples are the
host Internet address and network assignment, the
number of retransmissions to be attempted for fail-
ures, and initial retransmission time–out values.
Aliases, such as ‘‘Boss,’’ ‘‘Siblings,’’ ‘‘Subordi-
nates,’’ ‘‘Adjacent,’’ etc. are also available. (These
are not group addresses, but simply aliases for lists
of addresses.)

Unreliable transmission requires no ack-
nowledgment and is referred to as ‘‘broadcast.’’ The
usefulness of this mode of transmission is contro-
versial but has found frequent use in the ARL proto-
type because of the transient nature of much of the
low–echelon data. Since broadcast involves a com-

2 A FEX is typically much smaller than a data link layer packet.
Modern tactical protocols (like 188–220A) support concatena-
tion of upper layer protocol data units so that several FEXs, per-
haps all destined for different hosts, could be concatenated and
transmitted together in one datalink layer packet.

3 The acknowledgment scheme used is the same as that for ‘‘un-
coupled acknowledgments’’ in 188–220A [1995].

munications channel instead of hosts, the channel
on which the broadcast is to occur must be identified
within a rule. Data broadcast is an excellent exam-
ple of a ‘‘promiscuous’’ replication mechanism be-
cause it implies that some data are worthy of trans-
mission but not retransmission. In other words,
some data may be considered helpful but not essen-
tial, or they are so short–lived that retransmission is
pointless.

Because of the ‘‘overhearing’’ feature (i.e., all
FEXs are passed up from the network layer regard-
less of addressing), unicast and multicast are equiv-
alent to broadcast for those hosts not listed in the ad-
dress list. Consequently, if a rule already has a
reliable destination listed, then it is redundant to in-
clude a broadcast command on the same commu-
nications channel since all hosts on that channel will
receive the transmission anyway. In a promiscuous
replication environment, the only purpose of ad-
dressing is to identify those hosts that must ac-
knowledge receipt of the information.

Also linked with the destination addresses is ur-
gency information that is represented by priority
and staleness parameters. Priority is interpreted as
expected (i.e., precedence) while staleness refers to
the interval of time that the data remains useful and
is normally expressed using time. During concept
development, there was significant debate as to
whether these parameters should be included in the
‘‘what–part’’ or the ‘‘where–part’’ of the rule syn-
tax. It was decided that, in most cases, urgency was a
function of a particular recipient rather than an in-
herent property of the information itself. Conse-
quently, priority and staleness are associated with
the destination of the information. The use of these
parameters is discussed in the next section.

4 Transport Layer Protocol Features
Maintaining end–to–end reliability is a significant
challenge in an environment where connectivity is
intermittent, congestion is high, and failures can
reach 50% and greater. Under these conditions,
queues grow quickly and retransmission adds to the
congestion. One cannot allow the transmission
mechanisms to become mired so that information
flow is effectively halted. Instead, one must contin-
ually re–evaluate which information is the most im-
portant and periodically purge the queues of less im-
portant updates. This continuous re–evaluation is a
key characteristic of a resilient replication mecha-
nism.

���������	�
���	������������������	�	��������������������

– 7 –

4.1 Just–in–Time Packet Construction

Just–in–time (JIT) packet construction means that
the selection of database updates to be transmitted is
postponed until the very last possible moment. It
recognizes that in tactical environments, network
access may incur significant delays. This feature is
not necessary with high-capacity networks because
delays are not severe. But in low–bandwidth condi-
tions, where outgoing queues are expected to be
large, it is necessary to ensure that the most impor-
tant information continues to be sent first, even dur-
ing intervals of high network congestion.

JIT packet construction would normally be im-
plemented at the transport layer of the OSI Refer-
ence Model. The idea is that the transport layer pro-
tocol maintains a multidimensional, priority queue
of database transactions (received from the upper
layer protocol [ULP]) awaiting transmission. When
data are present in the queue, the transport layer no-
tifies the lower layer protocol (LLP) that it has
something to send and then waits for a return signal
that the LLP is ready to accept the data. During the
wait, more updates may arrive, but since the outgo-
ing packet has not yet been built, there is no penalty
for arriving late. When the ‘‘ready’’ signal is re-
ceived from the LLP, the transport layer selects the
updates to be sent and passes them down to the LLP;
see Figure 6.

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

Figure 6: Just–in–Time Packet Construction

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

���

������	��

���

�!��.%,/01��$%$��2$,%,34
5!��,43$(1��&$#0��.��&3#

�!��"#$%&'��&6&,-&#

�

� 57

.**'�8$33&(

7!���9'��&(&6%&#
����$3#��&3%

The goal is to have the LLP postpone its signal
as long as timing allows. Metaphorically, this
equates to a railway station waiting for a train to ar-
rive before selecting passengers for boarding. First–
come, first–served is no longer in effect. As long as

one arrives before the train, he/she will be included
in the selection process based on some measure of
his/her precedence and not on order of arrival. The
goal is to prevent higher precedence passengers
from waiting behind lower precedence passengers
that arrived earlier.

Precedence may be measured in many ways. In
the previous section, urgency was defined in terms
of data priority and staleness. Both of these values
would be included as part of the distribution rule
and would be passed down from ULP. An update be-
comes stale when its staleness timer expires; i.e., it
has been in the queue longer than its staleness time.
Under this scheme, one may remove stale updates
from the queue so that they don’t block fresher up-
dates behind them. Similarly, the remaining time of
the staleness timer may also be used to calculate
transmission precedence.

Most networks have a maximum packet size that
is allowed at the various layers of the protocol. This
value is typically defined at the Datalink layer and is
called a Maximum Transmission Unit (MTU) in the
Internet [MIL STD 1777, 1985]. To implement JIT,
the transport layer must know the MTU of each net-
work to which it is connected. If the network is con-
gested, there may be many more FEXs pending than
can fit into one MTU. Therefore, once the ‘‘ready’’
signal is received from the LLP, the transport layer
must not select more FEXs than will fit into the
MTU. This calculation must also take into account
the amount of overhead that will be added by the
LLP. It is important that the transport layer not ex-
ceed the MTU, for if the LLP fragments the packet,
the purpose of JIT is defeated as information is once
again placed in first–in, first–out (FIFO) queues.4,5

As previously mentioned, the closer one can
coincide packet construction with packet transmis-
sion, and the better one can ensure that the most ur-
gent information will get transmitted first. Ideally,
for a carrier–sensed, multi–access (CSMA) proto-
col like those commonly used for tactical environ-
ments, this means at least waiting until the transmis-
sion slot is selected at the datalink layer. For
example, once notified that there are data to send,
the new Military Standard 188–220A Tactical Pro-
tocol [188–220A, 1996] computes a time delay to

4 For IP, the ‘‘Do Not Fragment’’ option may also be set.

5 One of the tenets of overhearing is that each overheard packet
should include usable information. Arbitrary fragmentation
will defeat this property.

���������	�
���	������������������	�	��������������������

– 8 –

determine which time slot will be used to attempt to
access the network. This delay could be passed up to
the Transport Layer so that a back-off time can be
computed to determine when to construct the packet
and send it to the LLP so that it arrives just moments
before the time slot is reached. If the slot is busy, a
‘‘cancel’’ signal could be sent up to the Transport
Layer followed by a new slot time, and so on. If tim-
ing were perfect, the outgoing packet would be ef-
fectively sent by the transport layer directly to the
communications channel.

In an ARL prototype implementation, called the
Fact Exchange Protocol (FEP) [Kaste, 1990], the
active database rules submit database transactions
to the FEP for transmission. (The FEP views the
transactions as arbitrary chunks of data.) Each sub-
mission includes a priority, staleness time and other
network-related parameters. The FEP encapsulates
each submission into a Fact Exchange (FEX), as-
signs it a unique tag (called a Fact Exchange ID),
and returns that tag back to the ULP for future refer-
ence (e.g., to track the progress of its submissions).
The FEP places the FEXs in its priority queue and
uses JIT packet construction to transmit the FEXs to
other hosts. The selection of FEXs for inclusion into
outgoing packets is based upon their priority, stale-
ness, time-out status, queue location, and other cri-
teria. If the FEX is successfully transmitted before
the staleness time expires, the FEP notifies the up-
per layer using the associated FEX ID. Alternative-
ly, the Fact Exchange may fail. If this occurs, the
FEP notifies the upper layer and provides the reason
for failure.

4.2 Fact Exchange Failures

There are three possible causes for a fact exchange
(FEX) failure: network congestion, loss of network
connectivity, or destination host failure.6 These fail-
ures manifest themselves as two primary types of
FEX failures: a staleness failure due to the expira-
tion of a staleness timer, or a retransmission failure
due to exceeding the maximum number of retrans-
missions.

There are two circumstances under which a
staleness failure occurs. The first is the normal situ-
ation in which during the transmission and retrans-
mission process the timer simply expired. In this
case the number of transmissions will be between
one and the maximum number allowed. Note that in

6 Host failure is often permanent in the tactical environment.

broadcast cases, a successful FEX is one that was
successfully transmitted once (there are no ack-
nowledgments). The second circumstance is the
special situation in which the FEX was never even
transmitted once. In this case, either the net is so
congested that the datalink layer never gained ac-
cess within the staleness period (global congestion),
or the FEXs priority was not high enough to get it
included in any outgoing packets (local conges-
tion). It is important to distinguish between these
types of failures because different recovery proce-
dures may be followed.

The second type of failure is a retransmission
failure. In this case, the FEX is included in an outgo-
ing packet, but an acknowledgment was not re-
ceived within the retransmission time–out (RTO)
period. This transmission process is then repeated
up to a maximum number of attempts. When that
number is exceeded, a failure is identified. The rea-
son for this type of failure is loss of connectivity,
failure of the destination host, or the RTO parameter
being set too small. Figure 7 summarizes the type of
FEX failures and the associated reason.7 When a

Figure 7: Reasons for Fact Exchange Failures

����� ���� ������

��������� ����������

� � ����� �

��������� ����������! ��

� " � � ����� � ��# �����$����! ��

%���
���&��

� ����� ' ��# �����$���� ��

%���
���&��

FEX failure occurs, one of these failures is identi-
fied and is returned to the ULP to facilitate further
investigation in an attempt to determine the under-
lying situation and recommend a recovery method.

5 Failure and Recovery
Just as the transport layer is tracking the success of
fact exchanges, the replication mechanism, con-

7 Another type of failure is when transmission windows are ex-
ceeded. This is when there are too many unacknowledged fact
exchanges pending to a particular host or channel. In other
words, acknowledgments are not being received. These are
handled in the same manner as retransmission failures.

���������	�
���	������������������	�	��������������������

– 9 –

trolled by the active database, is tracking the success
of rules. The next step, failure recovery in a resilient
system, is a current research topic, and this section
discusses some of the consideration to date. An in-
teresting and difficult task is automating the re-
sponse to failures at the trigger (or rule) level. Recall
that the firing of a trigger may invoke a replication
command that can generate several database up-
dates, each which is encapsulated as a fact exchange
(FEX) by the transport layer protocol. As failures
occur, something must be done about them. The ro-
bust approach would be to keep trying by using
another network path, more forward error correc-
tion, more power, etc. The resilient approach is to
determine whether or not there is any value added in
further attempts that may potentially increase the
congestion and acerbate communication problems.
There is a wide range of options: at one extreme, one
may give up; at the other extreme, one may continue
to retransmit the transaction.

The answer to this quandary usually ends up as
the ubiquitous ‘‘it depends on the situation.’’ Fortu-
nately, the strength of the model–based approach is
that any information included in the data model
(i.e., resident in the database) is available to assist in
determining a reaction to failure.

At the rule level, there are at least two consider-
ations for failures. The first is tactical significance.
For example, in most cases the failure of a single
position location update will not cause a significant
synchronization problem, while missing several up-
dates, especially in sequence, may produce a signif-
icant problem. However, if a single position update
signifies the reaching of a particular goal, such as an
intermediate objective, then it may have a signifi-
cant impact on synchronization. So how one re-
sponds to a failure may depend on the event that
caused the trigger.

Just as with the fact exchanges, the general ques-
tion ‘‘what is a failure’’ must be answered for rules.
A second consideration of failure is transmission
completeness. A replication action is considered
‘‘completely successful’’ if all associated fact ex-
changes are ‘‘completely delivered.’’ In the exam-
ple provided in Figures 4 and 5, a geographic area is
discussed. Suppose everything except one of the
points of a polygon is successfully delivered. The
rule will not be successful because all the associated

fact exchanges were not completely delivered.8

Even more subtle, suppose a FEX is multicast and
only three of four recipients acknowledge it. Is that
an error? The answer to most of these questions is
that ‘‘it depends on the situation.’’

One approach being examined is adding an
‘‘else’’ part to the (‘‘if’’ criteria and ‘‘then’’ action)
rules that describes what to do if the action is not
completely successful. The first task is to deter-
mined why the transmission failed so that the
chances of a successful retransmission can be calcu-
lated. For example, communications connectivity
information deduced by passively monitoring the
network can be used to determine is a host is dead or
just disconnected, see Figure 8. If Host A has a se-

Figure 8: Additional Information Accumulated
 Via Passive Monitoring of the Network

Host A

Host B

Host C

Host A’s Perspective

ries of failed transmissions to Host B, but it can
‘‘hear’’ Host C acknowledging Host B, then it
knows that Host B is active and may just be tempo-
rarily masked (e.g., due to geographic obstruction).
Further, Host A may know that Host B is heading
toward it so that connectivity is likely to improve in
the near term. In this case, Host A may wait and re-
transmit the information in the near future or use
Host C as a relay. However, if Host A can hear Host
B successfully transmitting to an other host (but not
to Host A) then perhaps Host A has a reception
problem.

Thus, further criteria may be included in the
‘‘else’’ part of the rule that peers into the database to
collect more details of the failure. In some cases, the
only retort may be user intervention. But the goal is
to restrict this to ‘‘serious’’ cases. In the future, more

8 This example shows the advantage of including all associated
database updates into one fact exchange when possible.

���������	�
���	������������������	�	��������������������

– 10 –

sophisticated capabilities may be included to auto-
mate this task, such as mediators [Wiederhold,
1992] or agent systems [Bailey et al., 1995].

Another aspect of this problem is to attempt to
reduce failures before they occur by restricting the
need to communicate (this is the third objective: to
replace missing information with predictions based
upon a priori information stored in the local model).
One ongoing ARL project is called ‘‘Objective Se-
quencing’’ where units exchange a sequence of
planned geographic objectives along with thresh-
olds that identify synchronization constraints. Pre-
diction is then used to compare actual progress with
expected progress. Thus, information only needs to
be exchanged when the actual progress deviates
from the expected progress by the threshold. This
can significantly reduce the amount of information
transmitted by restricting the number of conditions
and events that cause rules to fire.

6 Conclusion

Under a model–based paradigm, every unit in the
force maintains a local model of the battlefield in its
local computing environment. By maintaining
communication statistics as part of the model, the
synchronization criteria can be a function of the
derived communication performance. Thus, as
available bandwidth varies, so can the synchroniza-
tion requirements, and this information can be ac-
cessed by the data replication mechanism to assist in
selecting an appropriate response to failures. The
result is a realistic, resilient data replication ap-
proach that allows the synchronization criteria to
vary constantly in an attempt to provide a continu-
ous ‘‘best effort’’ rather than a discontinuous guar-
anteed result. In other words, ‘‘roll with the small
punches’’ that may not have a significant impact on
the synchronization of the battle.

This goal can be automated by using active data-
base or agent systems. But to accomplish this, one
has to modify the strict view of database consistency
adhered to by commercial systems. The underlying
principle of resilient data replication is to continue
to operate, perhaps with or without any significant
reduced capabilities, even during frequent, inter-
mittent communication outages. Information gen-
erators may have to throw away outgoing transac-
tions that have become stale while monitoring the
situation for continuous outages or extreme delays.
Information users may have to predict or estimate

current values during failures until new information
arrives.

In summary, this paper has focused on a view of
data replication that deviates from standard com-
mercial practices. This is important in cases like low
echelon battle command when, during the ‘‘Fog–
Of–War,’’ less accurate but timely information may
be more important than exact information. Similar-
ly, robust and resilient methods represent different
approaches to solving this problem. To provide re-
silient battle command systems, one must base the
design on the weakest links, which in most cases
(especially at the lower ‘‘fighting echelons’’) is the
communications systems. In cases of limited
bandwidth, one may have to sacrifice an exact (and
often not required) audit trail for rapid response of
selective data, but this is traditionally considered to
be a gross violation of data integrity. Ultimately,
there is ‘‘No Free Lunch.’’

References

[188–220A, 1996] Military Standard – Interoper-
ability Standard for Digital Message Transfer
Device Subsystems (MIL–STD–188–220A),
27 July 96.

[VMF, 1996] Variable Message Format (VMF)
Technical Interface Design Plan For Task Force
XXI, Reissue 1, Change 2, 26 January 1996.

[Bailey et al., 1995] James Bailey, Michael Geor-
geff, David Kemp, David Kinny, and Kotagiri
Ramamohanarao. Active Databases and Agent
Systems – A Comparison. Lecture Notes in
Computer Science: Rules in Database Systems.
Springer–Verlag, Berlin, 1995.

[Chamberlain, 1995] Sam Chamberlain. Model–
Based Battle Command: A Paradigm Whose
Time Has Come. In Proceedings of the First In-
ternational Symposium on Command and Con-
trol Research and Technology, pages 31–38,
Washington DC, June 1995. International Sym-
posium on Command and Control Research and
Technology.

[Cohen, 1989] Donald Cohen. Compiling Complex
Database Transition Triggers. In ���������	
 ��
�� ��� ������, pages 225–234, Portland,
OR, June 1989. International Conference on
Management of Data.

���������	�
���	������������������	�	��������������������

– 11 –

[Davis and Ginn, 1995] Michael Davis and Terry
Ginn. Experiences with Replicated Database
Systems for Command and Control. In Pro-
ceedings of the First International Symposium
on Command and Control Research and
Technology, pages 63–73, Washington DC,
June 1995. International Symposium on Com-
mand and Control Research and Technology.

[Dayal et al., 1995] Umeshwar Dayal, Eric Hanson,
and Jennifer Widom. Active Database Manage-
ment Systems. ������ ������
� ��
���� ��
������ ������ ����������������� ��� �����!
ACM Press and Addison Wesley, Reading, MA,
1995.

[Hansen and Widom, 1992] E.N. Hansen and J. Wi-
dom. An Overview of Production Rules in Data-
base Systems, �(�������$) ��*��� �+, -.,
IBM Research Division, 1992.

[IS 7498] Information Processing Systems � Open
Systems Interconnection: Basic Reference
Model, ISO International Standard 7498.

[Kameny, 1995] Iris M. Kameny. An Approach to
Replicated Databases for Robust Command and
Control. Rand Technical Report RAND/
MR–669–A/ARPA, Rand Arroya Center, Octo-
ber 1995.

[Kaste, 1990] V. Kaste. The Fact Exchange Proto-
col. A Tactical Communications Protocol. BRL
Memorandum Report BRL–MR–3856, August
1990.

[McCarthy and Dayal, 1989] Dennis McCarthy and
Umeshwar Dayal. An Architecture of an Active
Database Management System. In ���������	

�� �� ��� ������, pages 215–224, Port-
land, OR, June 1989. International Conference
on Management of Data.

[MIL STD 1777, 1985] US Military Standard 1777,
‘‘Internet Protocol,’’ DDN Protocol Handbook,
Vol 1, December 1985.

[Wiederhold, 1992] Geo Wiederhold. Mediators in
the Architecture of Future Information Sys-
tems. IEEE Computer, 25(3): pages 38–49,
March 1992.

